Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model
نویسندگان
چکیده
The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT). After FGF-2 (0.3%) or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC) were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological healing process.
منابع مشابه
Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs
Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a be...
متن کاملPeriodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs
PURPOSE This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. METHODS A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccoling...
متن کاملCollagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog
OBJECTIVE Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation de...
متن کاملEffect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog.
OBJECTIVE In root coverage treatment, periodontal regeneration in gingival recession-type defects is an important challenge for the periodontist. The aim of this study was to histometrically investigate the effect of combined use of basic fibroblast growth factor (FGF-2) and beta tricalcium phosphate (β-TCP) on root coverage in dogs. MATERIALS AND METHODS Sixteen adult beagle dogs were used. ...
متن کاملEnhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells.
BACKGROUND The use of suitable cells transplanted into periodontal osseous defects appears to be a powerful strategy to promote periodontal tissue regeneration. Mesenchymal stem cells (MSCs) isolated from bone marrow have the potential for multilineage differentiation. The purpose of this study was to examine whether auto-transplantation of MSCs into periodontal osseous defects would be useful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016